
The Vera C. Rubin Observatory Data Butler and pipeline
execution system

Tim Jenness1, James F. Bosch2, Andrei Salnikov3, Nate B. Lust2, Nathan M. Pease3,
Michelle Gower4, Mikolaj Kowalik4, Gregory P. Dubois-Felsmann5, Fritz Mueller3, and

Pim Schellart2

1Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA
2Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

3SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
4NCSA, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801,

USA
5IPAC, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA

ABSTRACT
The Rubin Observatory’s Data Butler is designed to allow data file location and file formats to be of no concern
to the people writing the science pipeline algorithms. The Butler works in conjunction with the workflow graph
builder to allow pipelines to be constructed from the algorithmic tasks. These pipelines can be executed at scale
using object stores and multi-node clusters, or on a laptop using a local file system. The Butler and pipeline
system are now in daily use during Rubin construction and early operations.

Keywords: Data Management, Rubin Observatory, Legacy Survey of Space and Time, Databases

1. INTRODUCTION
The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST)1 will image the entire southern
sky every three days and consist of tens of petabytes of raw image data and associated calibration data. All
these files must be tracked, along with the intermediate datasets and output products from pipeline processing,
and depending on where the processing occurs the files will be stored on either POSIX file systems or object
stores. The LSST Data Management System (DMS)2 is responsible for transferring raw files off the mountain
and storing them at the US Data Facility (USDF). The datasets are then processed by pipelines3,4 that can be
run at different data centers and the results integrated into a unified data release. This paper will discuss the
part of the DMS that abstracts data access from the pipeline algorithms, builds the execution workflow graphs,
and allows the processing jobs to be run in large batch processing systems.

2. THE DATA BUTLER
The Data Butler (hereafter the “Butler”) is the system that abstracts the data access details from the pipeline
developers. The top requirements for the Butler are:

• The pipeline writer should not have to know where the data are being read from or written to or what file
formats are being used, or even if a file is involved at all.

• The pipeline writer only has to deal with Python objects.

• Users should be able to locate the relevant data using common astronomical concepts such as observation
identifier, physical filter, patch of sky, or telescope.

The current implementation of the Butler is colloquially knowns as the “Generation 3” Butler since it is
the third implementation during the evolution of the LSST DMS, a project that began nearly 20 years ago.5
The “Generation 2” Butler was used for many years but certain limitations in the design and implementation,
especially in terms of its relationship with the evolving demands of the pipeline design and need for more
flexibility, led to it being completely replaced with a brand new system that shares no code with previous
versions.

The two main components of the Butler are the Registry and the Datastore. Registry organizes datasets
conceptually and associates them with these astronomical concepts, but it has no idea where or how datasets
are persisted. Datastore is responsible for serializing a Python object to a storage system and reading data back
from that storage system and recreating the Python object. There is then a thin layer of code (the responsibility
of the Butler Python class itself) providing a unified interface to the user that coordinates the Datastore and
Registry interaction to ensure consistency.

2.1 Defining a Dataset
A cornerstone of the Butler design is that any dataset can be found by specifying a coordinate in its dimensional
space. These dimensions are generally quantities that can be understood by an astronomer as being relevant
for the particular dataset. For example, raw data can be addressed using dimensions instrument, detector,
and exposure. A specific dataset must then be specified using a coordinate within that dimensional space,
for example: {instrument="LSSTCam", detector=1, exposure=2024050100023} will uniquely represent the
second detector of the 23rd LSSTCam observation taken on 2024-05-01.

In order to determine which dimensions are relevant for a specific dataset, Butler has the concept of a “dataset
type”. A dataset type gives a name to the combination of the list of relevant dimensions, an abstraction around
the Python type it corresponds to, and whether or not it is a calibration dataset. The name of the dataset type
itself does not matter, but it is important that the names are used consistently because they are critical when
constructing pipelines. Raw data are commonly given the dataset type raw and the LSST science pipelines use
dataset type names such as calexp (calibrated exposure), defects (pixel defect masks), and bias (processed
biases), with the intent being for the name to be descriptive enough for a science user to have a good idea as to
what type of data it represents.

The abstraction around the Python type is called a “storage class”. The Butler’s main job is to store Python
objects somewhere and to retrieve them again. We use storage classes to map a name to a Python type and
allow additional configuration to be associated with the Python type such as whether Butler can treat the type
as a composite and what parameters can be included in the retrieval to modify the returned object. Composites
can be important in that some pipelines may, for example, only need to take a WCS or a pixel mask as input and
do not want the entire calibrated exposure to be loaded. A storage class can declare the components it allows
and then declares the associated storage classes of each component.

The data model used by Butler is currently designed specifically for astronomical imaging data. The model
itself is specified in a YAML text file and is therefore easily extended or modified to suit specific needs. There is
a tension between trying to develop one unified model that will support all astronomy data versus an approach
where every observatory specifies their own dimension universe for every instrument. A unified model is needed in
scenarios where datasets from different instruments should be processed in the same pipeline. There is, though,
no problem with multiple distinct Butler repositories being configured with their own dimension universes when
the data are very different and then requiring the user to choose the relevant Butler repository. Currently there
are two projects experimenting with the Butler using non-imaging survey data, and both Subaru’s Prime Focus
Spectrograph team6 and NASA’s SPHEREx team7 have decided to alter the default dimension universe data
model.

2.2 Collections
A dataset can be specified by its data coordinate and dataset type, but the Butler needs one final piece of
information to uniquely locate the desired dataset. In order to allow different pipeline execution runs to store
their outputs without over-writing datasets from previous runs, each dataset must be associated with a RUN

collection. Every dataset stored in a Butler Registry can be uniquely located by knowing the run collection, data
coordinate, and dataset type.

Whilst every dataset must be stored in a RUN collection there are also other types of collections that can be
used:

• A TAGGED collection is a collection of arbitrary datasets.

• A CHAINED collection is a collection of other collections and those other collections can be of any type
(chains of chains are allowed). A CHAINED collection does not itself contain datasets.

• A CALIBRATION collection is a special type of collection where a calibration dataset (one whose dataset
type is marked as a calibration) can be associated with a validity timespan.

All these collections are important when building and executing pipelines.

2.3 The Registry
Registry can be thought of as a database that can be queried to find out what datasets are available. We define
Registry to have an abstract interface to allow different implementations to co-exist, although we do assume
that a SQL-like syntax is supported when constraining queries (effectively a WHERE clause), even if that does not
result in SQL being executed in the specific registry implementation.

The primary Registry implementation uses SQLAlchemy8∗ to talk to PostgreSQL† or SQLite‡ backend
databases. We do not make use of the Object Relational Mapping interface, and instead use the low-level
SQLAlchemy “Core” interface to create and interact with tables.

The Registry stores all the dimension information, collection and dataset type definitions, and the associations
between these and the actual datasets. All dimension values must be pre-defined before a dataset can be stored
with that value, and the dimension records have additional metadata that can be used to constrain dataset
queries or to provide more detail as to what a dimension really represents. For example, in the default schema
the exposure dimension contains metadata including the time of the exposure, the elevation and azimuth, the
observation type, and the exposure time, whereas the detector dimension contains metadata including the full
name, the raft name, and the detector type. The tables that hold this dimension metadata exist independently
of the datasets they correspond to; for example, while the metadata associated with the exposure dimension
metadata is usually derived from the header of a raw dataset, that exposure is also associated the dataset types
that represent processing done on that exposure. The dimension tables – which often also include foreign key
relationships, such as the physical_filter associated with an exposure – thus form a data model “skeleton” of
sorts for the actual datasets, which have no relationships of their own. In some case those dimension relationship
are spatial (some dimensions are associated with regions on the sky) or temporal (associated with time spans).

These dimension relationships allow the Registry to provide a rich query system, based on a custom expres-
sion language based on SQL boolean expressions. These are parsed and translated by Registry into actual SQL
queries, and we delegate optimization and execution of these queries almost entirely to the underlying database.
But in contrast to raw SQL the user essentially has to only provide the Registry the equivalent of the WHERE
clause, because the SELECT clause is based on what dataset types or dimensions are being requested, and the
multi-join FROM clause can be worked out internally according to the known dimension relationships, despite
those relationships being encoded in YAML configuration rather than code. The query system also encapsulates
the actual database schema from the user, allowing it to be changed for performance reasons without breaking
user code.

∗https://www.sqlalchemy.org
†https://www.postgresql.org
‡https://www.sqlite.org/index.html

https://www.sqlalchemy.org
https://www.postgresql.org
https://www.sqlite.org/index.html

2.4 The Datastore
Datastores are responsible for serializing a Python object to a storage system and reading the data back from the
storage system and returning a Python object. On put datastore is given a reference to the dataset (encapsulated
in the Python class DatasetRef) by Registry (this is the data coordinate, the dataset type, the run collection,
and the unique identifier, a UUID, assigned by Registry) and the Python object. To retrieve a dataset the
datastore is passed in the dataset reference. By design the only connection between Registry and Datastore is
the dataset reference, although in some implementations the datastore can make use of the shared PostgreSQL
database to store relevant information.

The Butler user does not have to know how data are serialized or where it is coming from, indeed there is no re-
quirement for files to be involved at all. In the current system there are three datastores defined: FileDatastore
serializes to files; InMemoryDatastore stores Python objects in an in-memory cache; and ChainedDatastore is
a datastore consisting of other datastores. All datastores support configuration-based constraints that can be
used to decide whether a specific dataset type or storage class should be accepted or rejected by the datastore.

2.4.1 File Datastore
The FileDatastore is the most fundamental of the datastore implementations in that it is responsible for
serializing datasets to files and reading them back in again. A file datastore is defined by a URI pointing to the
area where files are under the control of the datastore. A URI is used rather than a file path to allow file I/O
itself to be abstracted to allow use of remote storage or POSIX file systems. To achieve this abstraction we use
a unified URI handler class, ResourcePath from the lsst-resources package§, which currently supports S3
storage, Google Cloud Storage, WebDAV, and POSIX, and new storage systems can easily be added.

Within the file datastore the class that is responsible for creating the file and reading the file is called the
Formatter. The datastore configuration system includes a look up table that matches the dataset type or
storage class of the relevant dataset to a corresponding formatter implementation. This formatter is then given
the Python object and the destination location and told to write the file. Similarly, when a dataset is requested,
the formatter is looked up in the internal datastore registry and the formatter is told to read the file. We do
not look up the formatter from configuration when reading since it is possible that the configuration may have
changed since the file was stored.

Whereas the registry only deals with datasets, the datastore understands composites. When a dataset is
associated with a composite storage class, the datastore can be configured to disassemble the dataset and write
the contents as distinct files. For example, an astronomical image could be disassembled into the pixel image
data, a variance plane, a mask, and a header before being written out as four files. If a user requests just the
header component, that file can be read without needing to look at the other files, and if the full dataset is
requested all components will be read and the composite will be reassembled using the helper class declared in
the storage class definition. Of course, if a user requests a component when the dataset was not disassembled,
this will still work, although it may require the entire file be downloaded from a remote object store in order to
extract a small subset.

When the datasets are stored on a slow network disk or a remote object store, it is inefficient to continually
re-read the files if the pipeline algorithm is reading subsets or if the user is requesting individual components.
The file datastore overcomes this by implementing a caching system where the file is stored in a more local
cache directory on first retrieval. The cache can expire files based on number of files, total cache size, or number
of dataset (noting that a disassembled composite will consist of multiple files). In some situations this can
significantly improve performance with remote datastores.

2.4.2 In-Memory Datastore
This is an in-memory caching datastore. Since it caches Python objects in a single process its main purpose
is to support intermediate products that are to be passed from one task to another without needing to include
the overhead for serialization. In most scenarios an in-memory datastore is combined with another datastore
in a chain. Care must be taken when returning datasets from the in-memory datastore since Python can not

§https://github.com/lsst/resources

https://github.com/lsst/resources

prevent the caller from modifying the object, which would cause confusion if the object is retrieved a second
time. Options being considered are to always deep copy the object on return, or consider allowing the datastore
to be configured to remove the object from the cache when retrieved.

2.4.3 Chained Datastore
The chained datastore implementation does not itself store any datasets. It consists of multiple datastores, each
with its own configuration and allowed to be of any type. When writing a dataset the dataset is presented to
each datastore in turn and everything is okay so long as one datastore accepts the dataset. When reading a
dataset each datastore is asked for the dataset in turn and the Python object is returned from the first matching
datastore. Combined with per-datastore dataset type constraints, this can allow some datasets to be stored in
an in-memory datastore and file datastore but allow the in-memory dataset to be retrieved efficiently, whilst
other datasets are only stored in the file datastore. Alternatively a chain of two file datastores can be used to
allow one datastore to be read-only (for example a datastore containing a validated self-contained data release)
and a second datastore to accept derived products from users.

2.4.4 Other Datastores
The datastore interface does not require datasets to be persisted as files. For example, we are considering storing
pipeline metrics directly into our metrics database.9,10 The Butler user would not know whether a metric was
being stored as a JSON file in a file datastore or stored directly into a metrics database (or even stored in both
places).

2.5 Client/Server Butler
The Butler is a Python library that, by default, is set up to use SQLAlchemy to talk to a SQL registry, and will
use AWS or Google Cloud credentials to talk to object stores. This is not a convenient interface if Python is not
being used, or if the authorization required to access the database or object store directly is not available to the
people trying to access the Butler. The latter situation is likely to be the situation in the Rubin Science Platform
on Google where users will be logged in with Rubin accounts but will not be issued Google credentials.11,12

To solve this problem we are working on a https client/server Butler.13 The client user will present their
authentication token and the server will then determine if that user is authorized to retrieve the requested
dataset. If they are allowed, they will be returned a signed URL that their client can then use to retrieve the
dataset.

2.6 Command Line Tooling
There are many common operations that should be achievable without needing to write any Python code. To
serve those use cases we provide command-line tooling based on the click Python package.¶ Examples of the
current subcommands and options are shown in Fig. 1. We have defined a pluggable architecture where packages
other than the core daf_butler package can register their own Butler subcommands. This allows, for example,
specialist commands such as ingest-photodiodes and make-discrete-skymap to appear in the subcommand
listing even though they are not at all generic functionality.

2.7 Data Ingest
A Butler repository is not overly useful without containing any datasets. Facilities are provided for ingesting
externally-generated files, and for the generic ingesting tooling‖ care must be taken to define the correct data
coordinates for each dataset and to ensure that those dimension values have already been defined. The obs_base
package∗∗ provides a command specifically targeted at ingesting raw imaging data. The software scans a directory
tree for files matching the provided glob, uses the astro_metadata_translator†† infrastructure to read the
headers and translate the contents to a standard form, creates exposure records as needed, and then ingests

¶https://click.palletsprojects.com
‖butler ingest-files.
∗∗https://github.com/lsst/obs_base
††https://astro-metadata-translator.lsst.io

https://click.palletsprojects.com
https://github.com/lsst/obs_base
https://astro-metadata-translator.lsst.io

$ butler --help
Options:

--log-level LEVEL|COMPONENT=LEVEL ...
The logging level. Without an explicit
logger name, will only affect the default
root loggers (lsst). To modify the root
logger use '.=LEVEL'. Supported levels are [
CRITICAL|ERROR|WARNING|INFO|VERBOSE|DEBUG|TR
ACE]

--long-log Make log messages appear in long format.
--log-file FILE ... File(s) to write log messages. If the path

ends with '.json' then JSON log records will
be written, else formatted text log records
will be written. This file can exist and
records will be appended.

--log-tty / --no-log-tty Log to terminal (default). If false logging
to terminal is disabled.

--log-label TEXT ... Keyword=value pairs to add to MDC of log
records.

--progress / --no-progress Show a progress bar for slow operations when
possible.

-h, --help Show this message and exit.

Commands:
associate Add existing datasets to a tagged collection.
certify-calibrations Certify calibrations in a repository.
collection-chain Define a collection chain.
config-dump Dump butler config to stdout.
config-validate Validate the configuration files.
convert Convert a gen2 repo to gen3.
create Create an empty Gen3 Butler repository.
define-visits Define visits from exposures.
export-calibs Export calibrations from the butler for later import.
import Import data into a butler repository.
ingest-files Ingest files from table file.
ingest-photodiode Ingest photodiode data.
ingest-raws Ingest raw frames.
make-discrete-skymap Define a discrete skymap from calibrated exposures.
prune-datasets Remove datasets.
query-collections Search for collections.
query-data-ids List the data IDs in a repository.
query-dataset-types Get the dataset types in a repository.
query-datasets List the datasets in a repository.
query-dimension-records Query for dimension information.
register-dataset-type Register a new dataset type with this...
register-dcr-subfilters Add subfilters for chaotic modeling.
register-instrument Add an instrument definition to the repository
register-skymap Make a SkyMap and add it to a repository.
remove-collections Remove one or more non-RUN collections.
remove-dataset-type Remove a dataset type definition from a repository.
remove-runs Remove one or more RUN collections.
retrieve-artifacts Retrieve file artifacts from a Butler.
transfer-datasets Transfer datasets from one butler to another.
write-curated-calibrations Add an instrument's curated calibrations.

Figure 1. The butler command line options and subcommands.

the files by constructing a data coordinate from the translated metadata. It can handle raw files that store all
the detector images in a single file or as one file per detector, and Butler does allow a single file artifact to
be associated with multiple datasets in the Registry. In situations where the files may be ingested into Butler
repositories multiple times, a facility is also provided to use “sidecar” JSON files containing extracted metadata,
or even a JSON index file containing metadata for multiple files, since it much quicker to parse JSON than to
extract and parse a FITS header, especially if that FITS file is in an object store.

2.8 Calibrations
As noted above, a CALIBRATION collection is a special type of collection that associates datasets with a validity
range. When a calibration is requested the data coordinate of the dataset being calibrated is used and any
time-based dimensions (such as exposure) specify which calibration should be chosen.

Not all calibrations are calculated from datasets available to a Butler, for example, for LSSTCam the QE
curves are calculated by the camera team and given to the pipelines team as part of the camera delivery.
Additionally, some calibrations, such as defect masks, are relatively static, can be represented in a compact text
format, and are useful to people outside of a Butler. We call such datasets “curated calibrations” and store them
in Git repositories using text file formats and a directory layout that makes the validity ranges clear. It can be very
convenient when setting up a new Butler for an instrument to be able to seed it with these curated calibrations
without having to locate raw data files and reconstruct them from scratch, and infrastructure is provided to
enable that, for example using the butler write-curated-calibrations command line tool. Generally, when
these curated calibrations are stored the Butler converts them from text format to a binary format to make
reading them more efficient; this is all handled by the formatter configured for the particular datastore.

3. THE PIPELINE SYSTEM
Processing data is done with reusable units of code called Tasks. Each Task has a specialized configuration
object attached to it (from the pex_config package∗) and must provide a run() method that is the method that
implements the algorithm. Tasks can be nested within each other in a hierarchy to create high level algorithms.
However, the top level Task of any algorithm must satisfy an additional interface, defined as a PipelineTask,
which allows it to interact with the Butler for i/o and ordering within a processing pipeline.

A PipelineTask is special because it requires the author to declare the task’s “connections”: the datasets
the task will consume as inputs and produce as outputs. The interface also requires the definition of the task’s
dimensions, which defines the unit of processing over which the task runs. The task’s dimensions do not need
to match those of its input or output datasets; for example, a task with dimensions {instrument, exposure}
that takes an input with dimensions {instrument, exposure, detector} is a “gather” step that processes
all detectors from that exposure together, but processes each exposure independently (and hence possibly in
parallel). Other examples of PipelineTask dimensions are detector and exposure which operates on data
from an exposure of single detector taken from the telescope, whilst another could be band, tract, and patch
(sky regions) which would operate on many intermediate data products produced from previous processing stages
that overlap the specified region. The input and output datasets are tied in to the Butler by declaring the dataset
type name and associated storage class. The storage class is a proxy for the Python type and thus allows the
pipeline author to guarantee that the correct Python type will be given (converting it from another type if
required and supported) – if the storage classes associated with datasets of that dataset type in the target Butler
are not compatible with those required by the pipeline the pipeline will not run.

To support pipeline execution therun() method of a PipelineTask must take parameters that match the
input connections and must return a dict-like data structure where the keys match the expected outputs. A
PipelineTask then has enough information to be able to pull the required datasets from a Butler and store the
outputs, although task authors can override that default behavior using the associated config class to allow for
more complexity in the Butler interaction. Connections have options to allow the dataset loading to be deferred
(something that is important when co-adding hundreds of images) or to allow multiple datasets to be provided
if the dimensionality implies that.

∗https://github.com/lsst/pex_config

https://github.com/lsst/pex_config

description: A demo pipeline.
instrument: lsst.obs.subaru.HyperSuprimeCam
tasks:

calibrate:
class: lsst.pipe.tasks.calibrate.CalibrateTask
config:

astrometry.matcher.maxOffsetPix: 300
characterizeImage: lsst.pipe.tasks.characterizeImage.CharacterizeImageTask
isr:

class: lsst.ip.isr.IsrTask
config:

doVignette: true
vignetteValue: 0.0

Figure 2. An example minimalist HSC pipeline describing single frame processing.

Each PipelineTask provides one data processing step, and may be integrated together into a a processing
pipeline. We define pipelines using a YAML text file; an example is shown in Fig. 2. The example pipeline
consists of three tasks, with labels calibrate, characterizeImage, and isr, referencing the corresponding
PipelineTask Python classes. The order listed in the YAML file is not important because the classes imple-
menting each task know which dataset types they need and the pipeline builder arranges them such that the
output connections of one task are associated with the corresponding input connections of one or more other
tasks. Each task can have configurations specified in the pipeline file which override the default values, or over-
rides may be given through pipeline executor command line interface. This configuration not only supports
algorithmic values, but also allows configuring the names used for the datasets in a task’s connections. The abil-
ity to configure dataset types provides flexibility to reuse the same PipelineTask with different configurations
multiple times in a pipeline, with each configuration outputting a distinct dataset. Additionally, it also provides
flexibility in re-using pipelines. Different pipelines can be derived from a common base pipeline, but tasks can
be added or removed, and the datasets in the task connections can be configured such all the tasks can still be
joined into a connected pipeline graph. When a pipeline specifies an instrument explicitly, the Instrument class
can be used to apply specific configuration overrides to any of the tasks in the pipeline. Pipeline definitions can
be significantly more complex than in the example. To simplify this process, pipelines may be built up using the
common recipe and ingredients paradigm14,15 to allow for pipeline reuse. It is also possible for a user to specify
that a subset of a pipeline be executed rather than the entire thing.

Fig. 3a shows a visualization of the demonstration pipeline shown in Fig. 2. It shows all the input and output
datasets (including calibrations) and has determined the order of execution, and is referred to as a pipeline graph.
What it does not show is any specific datasets attached to each step. To determine what is to be processed a
graph building algorithm queries a Butler and allocate datasets to tasks. All of the datasets which correspond
to a unique set of task dimensions are bundled together into a unit of work that we call a “quantum”. The set of
all quanta to be executed and the relations between them and their tasks are called a “Quantum Graph.” The
user provides an input Butler collection to search for datasets, in addition to a Registry query expression that
affects not just the input datasets but the dimensions out of the tasks and output datasets as well. Having the
Registry’s dimension table skeleton populated before the Quantum Graph is generated allows us to query the
database for both input datasets and predict future output datasets in much the same way. The graph builder
then allocates each matching input dataset to a specific Quantum and determines all the expected datasets that
will be created during pipeline processing. During processing the outputs are written to a RUN collection along
with log datasets containing all the log messages written by a task, software package versions, and processing
metadata (including execution times and CPU usage for Tasks). In normal usage we then create a new CHAINED
collection that combines the input collections and the new output RUN collection to allow a single collection to be
queried for all the input and output datasets in that processing. This procedure produces chains of collections,
as processing campaigns proceed, which represent the final data products. The Quantum Graph itself provides
provenance information and is tied to the datasets by preserving the predicted output dataset UUIDs in the
Butler when they are stored during processing.

(a)

isr
lsst.ip.isr.isrTask.IsrTask

index: 0
dimensions: detector, instrument, exposure

postISRCCD
Dimensions: band, instrument, detector, physical_filter, exposure

raw
Dimensions: band, instrument, detector, physical_filter, exposure

bfKernel
Dimensions: instrument

defects
Dimensions: instrument, detector

flat
Dimensions: band, instrument, detector, physical_filter

crosstalk
Dimensions: instrument, detector

yBackground
Dimensions: band, instrument, detector, physical_filter

transmission_optics
Dimensions: instrument

camera
Dimensions: instrument

bias
Dimensions: instrument, detector

linearizer
Dimensions: instrument, detector

dark
Dimensions: instrument, detector

transmission_sensor
Dimensions: instrument, detector

isrOverscanCorrected
Dimensions: band, instrument, detector, physical_filter, exposure

transmission_filter
Dimensions: band, instrument, physical_filter

fringe
Dimensions: band, instrument, detector, physical_filter

transmission_atmosphere
Dimensions: instrument

brighterFatterKernel
Dimensions: instrument, detector

characterizeImage
lsst.pipe.tasks.characterizeImage.CharacterizeImageTask

index: 1
dimensions: visit, instrument, detector

icExp
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

icExpBackground
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

icSrc
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

calibrate
lsst.pipe.tasks.calibrate.CalibrateTask

index: 2
dimensions: visit, instrument, detector

calexpBackground
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

calexp
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

srcMatchFull
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

srcMatch
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

src
Dimensions: band, instrument, detector, physical_filter, visit_system, visit

ps1_pv3_3pi_20170110
Dimensions: skypix

(b)

25c1d8e9-a3d6-4148-81fc-a112f0ac455e
calibrate

instrument = HSC
detector = 41
visit = 322

calibrate_metadata
run: None

instrument = HSC
detector = 41
visit = 322

calexp
run: None

instrument = HSC
detector = 41
visit = 322

srcMatchFull
run: None

instrument = HSC
detector = 41
visit = 322

srcMatch
run: None

instrument = HSC
detector = 41
visit = 322

src
run: None

instrument = HSC
detector = 41
visit = 322

calibrate_log
run: None

instrument = HSC
detector = 41
visit = 322

calexpBackground
run: None

instrument = HSC
detector = 41
visit = 322

icExp
run: None

instrument = HSC
detector = 41
visit = 322

icSrc
run: None

instrument = HSC
detector = 41
visit = 322

icExpBackground
run: None

instrument = HSC
detector = 41
visit = 322

ps1_pv3_3pi_20170110
run: 'refcats/DM-28636'

htm7 = 231858

ps1_pv3_3pi_20170110
run: 'refcats/DM-28636'

htm7 = 231869

12fc485f-e2b4-483d-8868-3f46b10c4f36
isr

instrument = HSC
detector = 41
exposure = 322

postISRCCD
run: None

instrument = HSC
detector = 41
exposure = 322

isr_log
run: None

instrument = HSC
detector = 41
exposure = 322

isr_metadata
run: None

instrument = HSC
detector = 41
exposure = 322

raw
run: 'HSC/raw/all'
instrument = HSC
detector = 41
exposure = 322

yBackground
run: 'HSC/calib/gen2/20180117/unbounded'

instrument = HSC
detector = 41

physical_filter = HSC-Y

transmission_sensor
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC
detector = 41

camera
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC

fringe
run: 'HSC/calib/gen2/20180117/20140325T000000Z'

instrument = HSC
detector = 41

physical_filter = HSC-Y

bfKernel
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC

transmission_atmosphere
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC

dark
run: 'HSC/calib/gen2/20180117/20140131T000000Z'

instrument = HSC
detector = 41

transmission_optics
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC

transmission_filter
run: 'HSC/calib/DM-28636/unbounded'

instrument = HSC
physical_filter = HSC-Y

bias
run: 'HSC/calib/gen2/20180117/20140329T000000Z'

instrument = HSC
detector = 41

defects
run: 'HSC/calib/DM-28636/curated/20130131T000000Z'

instrument = HSC
detector = 41

flat
run: 'HSC/calib/gen2/20180117/20140325T000000Z'

instrument = HSC
detector = 41

physical_filter = HSC-Y

d54b55ff-cddb-4396-9922-1905a5bf928b
characterizeImage
instrument = HSC
detector = 41
visit = 322

characterizeImage_metadata
run: None

instrument = HSC
detector = 41
visit = 322

characterizeImage_log
run: None

instrument = HSC
detector = 41
visit = 322

Figure 3. Top is a visualization of the pipeline shown in Fig. 2. Bottom is the Quantum Graph for a single frame processing
of one detector from one HSC observation showing the same pipeline with specific datasets.

4. INTEGRATION WITH BATCH SYSTEMS
A Quantum Graph describes the work that the pipeline has to do in order to process all the data, but it does not
say how the work should be scheduled or any resources that are required. To run a Quantum Graph it has to be
converted to something that can be executed. On a single compute node (including a laptop) the ctrl_mpexec
package † provides a multi-processing executor, commonly run via the pipetask command line, that can run
every quantum in the correct order and track all the responses.

When a Quantum Graph consists of thousands of quanta, a single compute node is no longer sufficient. At
that scale we need to use workflow systems such as HTCondor,16 Pegasus,17 Parsl,18 or PanDA.19 For these
workflow systems the Quantum Graph must be translated into the form expected by the target system. Multiple
prototypes were developed in parallel20–22 but it was soon realized that many of the concepts for translating a
Quantum Graph to a specialist graph are common and we developed a new Batch Production System (ctrl_bps‡)
that would provide a framework to allow the aforementioned workflow systems to be treated as plugin code.

The BPS system provides a facility for a Quantum Graph to be converted to a generic form supporting
workflow system concepts, called the Workflow Graph, before being converted to the final form. This intermediate
graph includes submission configuration parameters such as those that specify special resource requirements
(CPU or memory) required by specific tasks. The BPS submission process also allows quanta to be clustered
for efficiency. Some quanta can be quick, executing in tens of seconds, and not all batch systems are designed
to efficiently handle such small payloads. Clustering allows for multiple quanta to be combined into a single
execution job; this can be particularly efficient if the clustering is designed such that the output of the first
quantum is the only input to the next quantum (which is a common scenario for the early stages of many
pipelines when a single detector is being characterized).

In the initial experiments, each quantum would talk to the main Butler repository when retrieving data at the
start of the quantum and then when writing the results out at the end. It soon became clear that this approach
was not tenable once thousands of jobs are running concurrently and they are all trying to ask the registry where
their specific datasets are located. We fixed this problem by changing the way that batch jobs interact with a
Butler. Initially we created a standalone read-only SQLite Butler registry containing the relevant information for
the entire workflow. That did fix the problem with the large numbers of simultaneous connections and updates.
However, as a SQLite file it had to be copied to each job. For very large workflows the SQLite file became large
enough that the copying caused its own problems on some systems and at minimum caused time delays. A better
solution was to use the Quantum Graph itself since the graph can be stored in a shared location and only the

†https://github.com/lsst/ctrl_mpexec
‡https://github.com/ctrl_bps

https://github.com/lsst/ctrl_mpexec
https://github.com/ctrl_bps

subset of the graph needs to be read by each job. The Quantum Graph knows all the input datasets and all the
expected output datasets; it is therefore possible for a Butler to be constructed that uses the Quantum Graph
itself as the Registry whilst using the main Datastore. To enable this it was necessary to transfer datastore
records for existing datasets into the Quantum Graph. Running large workflows in this manner means that the
main Registry is not involved at all during the bulk of the processing. Once the main workflow completes, a
final job is executed that checks the datastore to see which of the expected files were produced, and then ensures
that the associated registry entries are transferred back to the main Registry. This merge job runs even if the
workflow fails, to ensure that all the datasets that were generated are known to the main registry. These changes
significantly improved the scalability of the bulk processing. Note though that in this mode we are still writing
to the main datastore file system or object store and not using any file management facilities of the workflow
system. This decision is not hard-coded into BPS though and is entirely controlled by configuration. In the
future, we may decide to have jobs read and write to a job-local file system datastore (whilst matching all the
formatter and file naming configuration) and have the workflow system move files between the main datastore
and the job’s datastore

5. DEVELOPMENT PROCESS
All the code described in this paper is written in Python (requiring at least Python version 3.823) and is open-
source using the BSD 3-clause license for some packages and GPLv3 license for others. The code is available from
GitHub at https://github.com/lsst and we follow the Rubin Observatory Data Management development
process.§24 We use the black ¶ tool to automatically format the code, along with isort ‖ to order the Python
imports.

Much of the code uses Python type annotations which are verified using the Mypy package.∗∗ We had a
fairly large amount of code written before we decided to use type annotations. It is known to be difficult to add
type annotations to an existing project,25 and that was our experience. There are still parts of the system that
lack annotations and in some places it is extremely difficult to add them. In particular, the more flexible an API
is the harder annotations become, and this does begin to drive API design decisions. We have, though, found
that annotations do help once they have been added, and in particular code refactoring is less dangerous.

Documentation is built using Sphinx, based on the documenteer tooling†† and is integrated into the LSST
Science Pipelines documentation.‡‡

We use GitHub Actions in all the repositories to ensure that code is formatted correctly, the type annotations
are correct, and that all the tests pass and documentation builds. At the time of writing, these packages are not
yet available on the Python Package Index but we will be making them available that way. These packages do
not require the entire LSST Science Pipelines software system to be installed.

6. CONCLUSIONS
In this paper we have described a flexible system for abstracting data access from pipeline algorithmic code and
for constructing complex pipelines. The Butler system allows scientists and pipelines to have no knowledge of
file formats or data locations, and allows for pipelines to be built in a manner where the pipeline builder can
determine what data will be processed and how the individual algorithmic tasks will be combined. This system
has been successfully demonstrated at scale with the reprocessing of the DESC DC2 data26 on the LSST Interim
Data Facility at Google12 as part of LSST Data Preview 0.227 during late 2021 and early 2022.

§developer.lsst.io
¶https://black.readthedocs.io/
‖https://pycqa.github.io/isort/
∗∗https://mypy-lang.org
††https://documenteer.lsst.io
‡‡https://pipelines.lsst.io

https://github.com/lsst
developer.lsst.io
https://black.readthedocs.io/
https://pycqa.github.io/isort/
https://mypy-lang.org
https://documenteer.lsst.io
https://pipelines.lsst.io

ACKNOWLEDGMENTS
This material or work is supported in part by the National Science Foundation through Cooperative Agreement
AST-1258333, Cooperative Support Agreement AST-1202910, and Cooperative Support Agreement AST-1836783
managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy
under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory managed by Stanford
University. Additional Rubin Observatory funding comes from private donations, grants to universities, and
in-kind support from LSSTC Institutional Members.

REFERENCES
[1] Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., Alonso, D., AlSayyad, Y., Anderson,

S. F., Andrew, J., Angel, J. R. P., Angeli, G. Z., Ansari, R., Antilogus, P., Araujo, C., Armstrong, R., Arndt,
K. T., Astier, P., Aubourg, É., Auza, N., Axelrod, T. S., Bard, D. J., Barr, J. D., Barrau, A., Bartlett,
J. G., Bauer, A. E., Bauman, B. J., Baumont, S., Bechtol, E., Bechtol, K., Becker, A. C., Becla, J., Beldica,
C., Bellavia, S., Bianco, F. B., Biswas, R., Blanc, G., Blazek, J., Bland ford, R. D., Bloom, J. S., Bogart,
J., Bond, T. W., Booth, M. T., Borgland, A. W., Borne, K., Bosch, J. F., Boutigny, D., Brackett, C. A.,
Bradshaw, A., Brand t, W. N., Brown, M. E., Bullock, J. S., Burchat, P., Burke, D. L., Cagnoli, G.,
Calabrese, D., Callahan, S., Callen, A. L., Carlin, J. L., Carlson, E. L., Chand rasekharan, S., Charles-
Emerson, G., Chesley, S., Cheu, E. C., Chiang, H.-F., Chiang, J., Chirino, C., Chow, D., Ciardi, D. R.,
Claver, C. F., Cohen-Tanugi, J., Cockrum, J. J., Coles, R., Connolly, A. J., Cook, K. H., Cooray, A.,
Covey, K. R., Cribbs, C., Cui, W., Cutri, R., Daly, P. N., Daniel, S. F., Daruich, F., Daubard, G., Daues,
G., Dawson, W., Delgado, F., Dellapenna, A., de Peyster, R., de Val-Borro, M., Digel, S. W., Doherty,
P., Dubois, R., Dubois-Felsmann, G. P., Durech, J., Economou, F., Eifler, T., Eracleous, M., Emmons,
B. L., Fausti Neto, A., Ferguson, H., Figueroa, E., Fisher-Levine, M., Focke, W., Foss, M. D., Frank, J.,
Freemon, M. D., Gangler, E., Gawiser, E., Geary, J. C., Gee, P., Geha, M., Gessner, C. J. B., Gibson,
R. R., Gilmore, D. K., Glanzman, T., Glick, W., Goldina, T., Goldstein, D. A., Goodenow, I., Graham,
M. L., Gressler, W. J., Gris, P., Guy, L. P., Guyonnet, A., Haller, G., Harris, R., Hascall, P. A., Haupt, J.,
Hernand ez, F., Herrmann, S., Hileman, E., Hoblitt, J., Hodgson, J. A., Hogan, C., Howard, J. D., Huang,
D., Huffer, M. E., Ingraham, P., Innes, W. R., Jacoby, S. H., Jain, B., Jammes, F., Jee, M. J., Jenness, T.,
Jernigan, G., Jevremović, D., Johns, K., Johnson, A. S., Johnson, M. W. G., Jones, R. L., Juramy-Gilles,
C., Jurić, M., Kalirai, J. S., Kallivayalil, N. J., Kalmbach, B., Kantor, J. P., Karst, P., Kasliwal, M. M.,
Kelly, H., Kessler, R., Kinnison, V., Kirkby, D., Knox, L., Kotov, I. V., Krabbendam, V. L., Krughoff,
K. S., Kubánek, P., Kuczewski, J., Kulkarni, S., Ku, J., Kurita, N. R., Lage, C. S., Lambert, R., Lange,
T., Langton, J. B., Le Guillou, L., Levine, D., Liang, M., Lim, K.-T., Lintott, C. J., Long, K. E., Lopez,
M., Lotz, P. J., Lupton, R. H., Lust, N. B., MacArthur, L. A., Mahabal, A., Mand elbaum, R., Markiewicz,
T. W., Marsh, D. S., Marshall, P. J., Marshall, S., May, M., McKercher, R., McQueen, M., Meyers, J.,
Migliore, M., Miller, M., Mills, D. J., Miraval, C., Moeyens, J., Moolekamp, F. E., Monet, D. G., Moniez,
M., Monkewitz, S., Montgomery, C., Morrison, C. B., Mueller, F., Muller, G. P., Muñoz Arancibia, F.,
Neill, D. R., Newbry, S. P., Nief, J.-Y., Nomerotski, A., Nordby, M., O’Connor, P., Oliver, J., Olivier, S. S.,
Olsen, K., O’Mullane, W., Ortiz, S., Osier, S., Owen, R. E., Pain, R., Palecek, P. E., Parejko, J. K., Parsons,
J. B., Pease, N. M., Peterson, J. M., Peterson, J. R., Petravick, D. L., Libby Petrick, M. E., Petry, C. E.,
Pierfederici, F., Pietrowicz, S., Pike, R., Pinto, P. A., Plante, R., Plate, S., Plutchak, J. P., Price, P. A.,
Prouza, M., Radeka, V., Rajagopal, J., Rasmussen, A. P., Regnault, N., Reil, K. A., Reiss, D. J., Reuter,
M. A., Ridgway, S. T., Riot, V. J., Ritz, S., Robinson, S., Roby, W., Roodman, A., Rosing, W., Roucelle,
C., Rumore, M. R., Russo, S., Saha, A., Sassolas, B., Schalk, T. L., Schellart, P., Schindler, R. H., Schmidt,
S., Schneider, D. P., Schneider, M. D., Schoening, W., Schumacher, G., Schwamb, M. E., Sebag, J., Selvy,
B., Sembroski, G. H., Seppala, L. G., Serio, A., Serrano, E., Shaw, R. A., Shipsey, I., Sick, J., Silvestri, N.,
Slater, C. T., Smith, J. A., Smith, R. C., Sobhani, S., Soldahl, C., Storrie-Lombardi, L., Stover, E., Strauss,
M. A., Street, R. A., Stubbs, C. W., Sullivan, I. S., Sweeney, D., Swinbank, J. D., Szalay, A., Takacs, P.,
Tether, S. A., Thaler, J. J., Thayer, J. G., Thomas, S., Thornton, A. J., Thukral, V., Tice, J., Trilling,
D. E., Turri, M., Van Berg, R., Vanden Berk, D., Vetter, K., Virieux, F., Vucina, T., Wahl, W., Walkowicz,
L., Walsh, B., Walter, C. W., Wang, D. L., Wang, S.-Y., Warner, M., Wiecha, O., Willman, B., Winters,

S. E., Wittman, D., Wolff, S. C., Wood-Vasey, W. M., Wu, X., Xin, B., Yoachim, P., and Zhan, H., “LSST:
From Science Drivers to Reference Design and Anticipated Data Products,” ApJ 873, 111 (Mar 2019).

[2] Jurić, M., Kantor, J., Lim, K. T., Lupton, R. H., Dubois-Felsmann, G., Jenness, T., Axelrod, T. S., Aleksić,
J., Allsman, R. A., AlSayyad, Y., Alt, J., Armstrong, R., Basney, J., Becker, A. C., Becla, J., Biswas, R.,
Bosch, J., Boutigny, D., Kind, M. C., Ciardi, D. R., Connolly, A. J., Daniel, S. F., Daues, G. E., Economou,
F., Chiang, H. F., Fausti, A., Fisher-Levine, M., Freemon, D. M., Gris, P., Hernandez, F., Hoblitt, J.,
Ivezić, Z., Jammes, F., Jevremović, D., Jones, R. L., Kalmbach, J. B., Kasliwal, V. P., Krughoff, K. S.,
Lurie, J., Lust, N. B., MacArthur, L. A., Melchior, P., Moeyens, J., Nidever, D. L., Owen, R., Parejko,
J. K., Peterson, J. M., Petravick, D., Pietrowicz, S. R., Price, P. A., Reiss, D. J., Shaw, R. A., Sick, J.,
Slater, C. T., Strauss, M. A., Sullivan, I. S., Swinbank, J. D., Van Dyk, S., Vujčić, V., Withers, A., and
Yoachim, P., “The LSST Data Management System,” in [Astronomical Data Analysis Software and Systems
XXV], Lorente, N. P. F., Shortridge, K., and Wayth, R., eds., ASP Conf. Ser. 512, 279 (Dec 2017).

[3] Bosch, J., AlSayyad, Y., Armstrong, R., Bellm, E., Chiang, H.-F., Eggl, S., Findeisen, K., Fisher-Levine,
M., Guy, L. P., Guyonnet, A., Ivezić, Ž., Jenness, T., Kovács, G., Krughoff, K. S., Lupton, R. H., Lust,
N. B., MacArthur, L. A., Meyers, J., Moolekamp, F., Morrison, C. B., Morton, T. D., O’Mullane, W.,
Parejko, J. K., Plazas, A. A., Price, P. A., Rawls, M. L., Reed, S. L., Schellart, P., Slater, C. T., Sullivan,
I., Swinbank, J. D., Taranu, D., Waters, C. Z., and Wood-Vasey, W. M., [An Overview of the LSST Image
Processing Pipelines], vol. 523 of Astronomical Society of the Pacific Conference Series, 521 (2019).

[4] Bosch, J., Armstrong, R., Bickerton, S., Furusawa, H., Ikeda, H., Koike, M., Lupton, R., Mineo, S., Price,
P., Takata, T., Tanaka, M., Yasuda, N., AlSayyad, Y., Becker, A. C., Coulton, W., Coupon, J., Garmilla,
J., Huang, S., Krughoff, K. S., Lang, D., Leauthaud, A., Lim, K.-T., Lust, N. B., MacArthur, L. A.,
Mandelbaum, R., Miyatake, H., Miyazaki, S., Murata, R., More, S., Okura, Y., Owen, R., Swinbank, J. D.,
Strauss, M. A., Yamada, Y., and Yamanoi, H., “The Hyper Suprime-Cam software pipeline,” PASJ 70, S5
(Jan. 2018).

[5] Kantor, J. P., “Managing the evolution of the LSST data management system,” in [Advanced Software and
Control for Astronomy], Lewis, H. and Bridger, A., eds., Proc. SPIE 6274, 0 (June 2006).

[6] Wang, S.-Y., Huang, P.-J., Chen, H.-Y., Kimura, M., Wen, C.-Y., Yan, C.-H., Karr, J., Chou, R. C. Y.,
Chang, Y.-C., Hsu, S.-F., Hu, Y.-S., Ling, H.-H., Reiley, D. J., Roberts, M., Gunn, J. E., Loomis, C.,
Lupton, R. H., Siddiqui, H., Murray, G. J., Ferreira, D., dos Santos, L. H., Souza Oliveira, L., de Oliveira,
A. C., Marrara, L. S., Tamura, N., Moritani, Y., and Takato, N., “Prime Focus Spectrograph (PFS): the
prime focus instrument,” in [Ground-based and Airborne Instrumentation for Astronomy VIII], Proc. SPIE
11447, 114477V (Dec. 2020).

[7] Crill, B. P., Werner, M., Akeson, R., Ashby, M., Bleem, L., Bock, J. J., Bryan, S., Burnham, J., Byunh, J.,
Chang, T.-C., Chiang, Y.-K., Cook, W., Cooray, A., Davis, A., Doré, O., Dowell, C. D., Dubois-Felsmann,
G., Eifler, T., Faisst, A., Habib, S., Heinrich, C., Heitmann, K., Heaton, G., Hirata, C., Hristov, V., Hui,
H., Jeong, W.-S., Kang, J. H., Kecman, B., Kirkpatrick, J. D., Korngut, P. M., Krause, E., Lee, B., Lisse,
C., Masters, D., Mauskopf, P., Melnick, G., Miyasaka, H., Nayyeri, H., Nguyen, H., Öberg, K., Padin, S.,
Paladini, R., Pourrahmani, M., Pyo, J., Smith, R., Song, Y.-S., Symons, T., Teplitz, H., Tolls, V., Unwin,
S., Windhorst, R., Yang, Y., and Zemcov, M., “SPHEREx: NASA’s near-infrared spectrophotometric all-
sky survey,” in [Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave], Proc.
SPIE 11443, 114430I (Dec. 2020).

[8] Myers, J. and Copeland, R., [Essential SQLAlchemy: Mapping Python to Databases], O’Reilly Media, Inc.
(2015).

[9] Sick, J. and Fausti, A., “LSST Verification Framework API Demonstration,”, Vera C. Rubin Observatory
SQuaRE Technical Note, SQR-019 https://sqr-019.lsst.io/ (Apr. 2018).

[10] Jenness, T., “Tracking Metrics in Butler,”, Vera C. Rubin Observatory Data Management Technical Note,
DMTN-203 https://dmtn-203.lsst.io/ (Aug. 2021).

[11] Allbery, R., “Possible authorization approaches for Butler,”, Vera C. Rubin Observatory Data Management
Technical Note, DMTN-182 https://dmtn-182.lsst.io/ (Mar. 2021).

[12] O’Mullane, W., Economou, F., Huang, F., Speck, D., Chiang, H.-F., Graham, M. L., Allbery, R., Banek, C.,
Sick, J., Thornton, A. J., Masciarelli, J., Lim, K.-T., Mueller, F., Padolski, S., Jenness, T., Krughoff, K. S.,
Gower, M., Guy, L. P., and Dubois-Felsmann, G. P., “Rubin Science Platform on Google: the story so far,”

https://sqr-019.lsst.io/
https://dmtn-203.lsst.io/
https://dmtn-182.lsst.io/

in [Astronomical Data Analysis Software and Systems XXXI], ASP Conf. Ser. in press, arXiv:2111.15030
(Nov. 2021).

[13] Jenness, T., “A client/server Butler,”, Vera C. Rubin Observatory Data Management Technical Note,
DMTN-176 https://dmtn-176.lsst.io/ (Mar. 2021).

[14] Jenness, T. and Economou, F., “ORAC-DR: A generic data reduction pipeline infrastructure,” Astronomy
and Computing 9, 40–48 (Mar. 2015).

[15] Labrie, K., Cardenes, R., Anderson, K., Simpson, C., and Turner, J., “DRAGONS: One Pipeline to Rule
them All,” in [Astronomical Data Analysis Software and Systems XXVII], Ballester, P., Ibsen, J., Solar, M.,
and Shortridge, K., eds., Astronomical Society of the Pacific Conference Series 522, 583 (Apr. 2020).

[16] Thain, D., Tannenbaum, T., and Livny, M., “Distributed computing in practice: the Condor experience,”
Concurrency and computation: practice and experience 17(2-4), 323–356 (2005).

[17] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P. J., Mayani, R., Chen, W., Ferreira
da Silva, R., Livny, M., and Wenger, K., “Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems 46, 17–35 (2015).

[18] Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak,
J. M., Foster, I., Wilde, M., and Chard, K., “Parsl: Pervasive Parallel Programming in Python,” in [Pro-
ceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing],
HPDC ’19, 25–36, Association for Computing Machinery, New York, NY, USA (2019).

[19] Maeno, T., De, K., Wenaus, T., Nilsson, P., Stewart, G. A., Walker, R., Stradling, A., Caballero, J.,
Potekhin, M., and and, D. S., “Overview of ATLAS PanDA workload management,” Journal of Physics:
Conference Series 331, 072024 (Dec. 2011).

[20] Bektesevic, D., Chiang, H.-F., Lim, K.-T., Miller, T. L., Thain, G., Jenness, T., Bosch, J., Salnikov,
A., and Connolly, A., “A Gateway to Astronomical Image Processing: Vera C. Rubin Observatory LSST
Science Pipelines on AWS,” in [Gateways 2020, October 12-23, 2020], Online, https://osf.io/2rqfb
(arXiv:2011.06044), Science Gatways Community Institute (Oct. 2020).

[21] Gower, M. and Lim, K.-T., “Batch Production Services Design,”, Vera C. Rubin Observatory Data Man-
agement Technical Note, DMTN-123 https://dmtn-123.lsst.io/ (Aug. 2019).

[22] Chiang, H.-F., Bektesevic, D., and the AWS-PoC team, “AWS Proof of Concept Project Report,”, Vera
C. Rubin Observatory Data Management Technical Note, DMTN-137 https://dmtn-137.lsst.io/ (Jan.
2020).

[23] Jenness, T., “Modern Python at the Large Synoptic Survey Telescope,” in [Astronomical Data Analysis
Software and Systems XXVII], Ballester, P., Ibsen, J., Solar, M., and Shortridge, K., eds., Astronomical
Society of the Pacific Conference Series 522, 541 (Apr. 2020).

[24] Jenness, T., Economou, F., Findeisen, K., Hernandez, F., Hoblitt, J., et al., “LSST data management
software development practices and tools,” in [Software and Cyberinfrastructure for Astronomy V], Proc.
SPIE 10707, 1070709 (July 2018).

[25] Jin, W., Zhong, D., Ding, Z., Fan, M., and Liu, T., “Where to Start: Studying Type Annotation Practices in
Python,” in [2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)],
529–541 (2021).

[26] LSST Dark Energy Science Collaboration (LSST DESC), Abolfathi, B., Alonso, D., Armstrong, R.,
Aubourg, É., Awan, H., Babuji, Y. N., Bauer, F. E., Bean, R., Beckett, G., Biswas, R., Bogart, J. R.,
Boutigny, D., Chard, K., Chiang, J., Claver, C. F., Cohen-Tanugi, J., Combet, C., Connolly, A. J., Daniel,
S. F., Digel, S. W., Drlica-Wagner, A., Dubois, R., Gangler, E., Gawiser, E., Glanzman, T., Gris, P., Habib,
S., Hearin, A. P., Heitmann, K., Hernandez, F., Hložek, R., Hollowed, J., Ishak, M., Ivezić, Ž., Jarvis, M.,
Jha, S. W., Kahn, S. M., Kalmbach, J. B., Kelly, H. M., Kovacs, E., Korytov, D., Krughoff, K. S., Lage,
C. S., Lanusse, F., Larsen, P., Le Guillou, L., Li, N., Longley, E. P., Lupton, R. H., Mandelbaum, R.,
Mao, Y.-Y., Marshall, P., Meyers, J. E., Moniez, M., Morrison, C. B., Nomerotski, A., O’Connor, P., Park,
H., Park, J. W., Peloton, J., Perrefort, D., Perry, J., Plaszczynski, S., Pope, A., Rasmussen, A., Reil, K.,
Roodman, A. J., Rykoff, E. S., Sánchez, F. J., Schmidt, S. J., Scolnic, D., Stubbs, C. W., Tyson, J. A.,
Uram, T. D., Villarreal, A. S., Walter, C. W., Wiesner, M. P., Wood-Vasey, W. M., and Zuntz, J., “The
LSST DESC DC2 Simulated Sky Survey,” ApJS 253, 31 (Mar. 2021).

https://dmtn-176.lsst.io/
https://osf.io/2rqfb
https://dmtn-123.lsst.io/
https://dmtn-137.lsst.io/

[27] O’Mullane, W., “Data Preview 0: Definition and planning.,”, Vera C. Rubin Observatory Technical Note,
RTN-001 https://rtn-001.lsst.io/ (Sept. 2021).

https://rtn-001.lsst.io/

	Introduction
	The Data Butler
	Defining a Dataset
	Collections
	The Registry
	The Datastore
	File Datastore
	In-Memory Datastore
	Chained Datastore
	Other Datastores

	Client/Server Butler
	Command Line Tooling
	Data Ingest
	Calibrations

	The Pipeline System
	Integration with Batch Systems
	Development Process
	Conclusions

